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Abstract: A growing number of studies confirm an important effect of diet, lifestyle and 

physical activity on health status, the ageing process and many metabolic disorders. This 

study focuses on the influence of a diet supplement, NucleVital®Q10 Complex, on 

parameters related to redox homeostasis and ageing. An experimental group of 66 healthy 

volunteer women aged 35–55 supplemented their diet for 12 weeks with the complex, which 

contained omega-3 acids (1350 mg/day), ubiquinone (300 mg/day), astaxanthin (15 mg/day), 

lycopene (45 mg/day), lutein palmitate (30 mg/day), zeaxanthine palmitate (6 mg/day),  

L-selenomethionine (330 mg/day), cholecalciferol (30 µg/day) and α-tocopherol (45 mg/day). 

We found that NucleVital®Q10 Complex supplementation significantly increased total 

antioxidant capacity of plasma and activity of erythrocyte superoxide dismutase, with slight 

effects on oxidative stress biomarkers in erythrocytes; MDA and 4-hydroxyalkene levels. 

Apart from the observed antioxidative effects, the tested supplement also showed  

anti-ageing activity. Analysis of expression of SIRT1 and 2 in PBMCs showed significant 

changes for both genes on a mRNA level. The level of telomerase was also increased by 

more than 25%, although the length of lymphocyte telomeres, determined by RT-PCR, 

remained unchanged. Our results demonstrate beneficial effects concerning the antioxidant 

potential of plasma as well as biomarkers related to ageing even after short term 

supplementation of diet with NucleVital®Q10 Complex. 
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1. Introduction 

Ageing is an unavoidable, universal biological phenomenon affecting all multicellular organisms 

(with a few apparent exceptions). Various hypotheses have been put forward to explain the molecular 

reasons for ageing, a prominent role among them being played by the free radical theory of ageing 

proposed originally by Harman [1] and reformulated later on by various authors [2,3]. The redox 

potential of the O2/2H2O redox system (approximately +0.8 V at pH 7) is more positive than those of 

most other biologically relevant redox systems. Organic compounds and structures composed of them 

are thermodynamically unstable in an oxygen-containing atmosphere. Molecular oxygen in its basic 

triplet state is rather unreactive due to the spin restriction, but the formation of oxygen free radicals 

and other reactive oxygen species (ROS) opens the gate for potentially deleterious oxidative reactions 

of oxygen [4]. Thus, the free radical theory of ageing seems to address the very concept of the intrinsic 

biological instability of living systems. The basic idea of the free radical theory of ageing is that free 

radicals and other ROS, formed unavoidably in the course of metabolism and arising due to the action 

of various exogenous factors, damage biomolecules, and the accumulation of this damage is the cause 

of age-related diseases and ageing. 

If the assumptions of free radical theory of ageing are true, it should be possible to slow down the 

process of ageing by intervention in the rate of generation of reactive oxygen species and/or their 

reactions with vital macromolecules, i.a. by administration of exogenous antioxidants. This 

straightforward conclusion should, however, take into account that: (i) cells and organisms tend to 

maintain redox equilibrium so long-term antioxidant supplementation may be not effective; and (ii) 

ROS are not only deleterious species, but also play a role in signaling pathways so drastic intervention 

in their level may sometimes be counterproductive. 

Numerous studies have been conducted on the effects of supplementation with antioxidant vitamins, 

other natural and synthetic antioxidants and antioxidant-containing preparations on the ageing and 

lifespan of model organisms. Results of these studies were divergent and, as summarized in recent 

reviews, did not provide consistent data on the life-prolonging effects of supplementation with 

exogenous antioxidants [5–7]. 

However, apart from the obvious examination of lifespan prolongation by antioxidant 

administration throughout most of the lifetime (long-lasting experiments), another approach to study 

the anti-ageing effects of antioxidants consists of short-duration experiments, in which functional tests 

compare the status of experimental animals before and after supplementation. An experiment of this 

type consisted in administration of N-tert-butyl-α-phenylnitrone (PBN) to aged Mongolian gerbils for 

2 weeks. Such a treatment reduced the amount of protein carbonyls in brain, augmented the activity of 

glutamine synthetase and decreased the number of errors in radial arm maze patrolling behavior, 

normalizing the values to those typical for young animals [8]. Similarly, relatively old mice  

(17.5 months) fed a high-CoQ diet (2.81 mg/g) for 15 weeks showed improved performance in Morris 

water maze tests and reduced protein oxidative damage [9]. The aim of the present study was to 
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examine in healthy volunteers the effect of short-term supplementation with an antioxidant formula on 

the chosen parameters related to ageing and oxidative stress. 

2. Results and Discussion 

It has been frequently emphasized that supplementation with natural products containing more than 

one antioxidant is more effective than administration of a single one [10,11]. The reason for this effect 

is not clear, but a partial explanation may lie in the possibility of synergism between the various 

antioxidants present in natural products [12,13]. As shown by Podmore and co-workers, the 

micronutrient content may be a critical point for the observed phenomenon [14]. There are studies 

showing that supplementation of diet with a single antioxidant (vitamin C, vitamin E or β-carotene) 

exerts more harm than benefits [15–17]. Supplementing diets of healthy volunteers with a high dose of 

vitamin C (500 mg/day) had a detrimental effect, viz. prooxidative changes detectable as elevated 

levels of DNA damages in lymphocytes isolated from tested individuals [14]. A synergistic interaction 

between vitamin C and vitamin E was shown to provide efficient prevention against lipid  

peroxidation [18]. In another study, supplementation with vitamin C only failed to reduce oxidative 

DNA damage in smokers [19]. This may support the hypothesis about correlation of efficiency with 

the synergistic effects of antioxidants. 

In the study now presented, a complex preparation containing several components was used. A 

capsule of NucleVital®Q10 Complex consists of several micronutrients including carotenoids, 

vitamins, selenium, ubiquinone and omega-3 acids. Participants in the presented research study were 

medically monitored in terms of general healthcare parameters. Blood morphology was analysed as 

well as creatinine, aminotransferase activity and lipid profile, including total cholesterol (TC), HDL, 

LDL and triglycerides (TG) (Table 1). Twelve weeks of supplementation did not affect any of the 

parameters indicated above, but revealed significant changes in blood parameters related to redox 

homeostasis and the ageing process. 

Table 1. Selected cardiovascular risk factors after NucleVital®Q10 Complex intake. 

Values are presented as mean ± SD. TG = triglycerides; TC = total cholesterol;  

HDL = high density lipoprotein; LDL = low density lipoprotein; ASPAT = aspartate 

aminotransferase; ALAT = alanine aminotransferase; # p > 0.001, paired T-test.  

Parameter Week 0 Week 12 

TG [mg/dL] 80.05 ± 30.46 83.27 ± 37.77 
TC [mg/dL] 211.41 ± 34.87 208.09 ± 36.01 

HDL [mg/dL] 72.72 ± 16.51 72.48 ± 17.31 
LDL [mg/dL] 122.73 ± 29.49 118.99 ± 29.93 
ASPAT [U/L] 19.62 ± 5.05 19.20 ± 6.32 
ALAT [U/L] 18.15 ± 8.65 17.98 ± 13.06 

Creatinine [mg/dL] 0.65 ± 0.10 0.71 ± 0.10 
Vit D [ng/mL] # 15.61 ± 6.66 29.16 ± 8.59 
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2.1. Redox Homeostasis of Blood after NucleVital®Q10 Complex Intake 

We have found significant differences in the antioxidant capacity of plasma as measured with the 

FRAP assay, which reflects the sum of activities of plasma antioxidants, mainly uric acid, plasma 

protein thiol groups and ascorbic acid [20] (Figure 1a). An increase of about 25% was observed on the 

average, after the supplement intake. These results are in agreement with the reports of other authors, 

where the combined effect of multiple antioxidant supplementation on antioxidant status of healthy 

volunteers was studied [21,22]. Although the major component of the total antioxidant capacity of 

blood is uric acid, we assume that changes in total antioxidant capacity (TAC) may rather be related 

with α-tocopherol. This small antioxidant is present in the NucleVital®Q10 Complex and was 

delivered consistently by 12 weeks, but more detailed studies should be performed to reveal the 

background of the increased TAC. 

Figure 1. Changes in antioxidative potential of blood before and after NucleVital®Q10 

Complex supplementation: (a) total antioxidant capacity of plasma (FRAP assay); (b) SOD 

activity; (c) GPx activity. # indicates statistically significant differences (p < 0.001). 
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Literature data show that TAC decreases significantly with age [23]. Our experiments performed  

in the presented study confirm this regularity. Reducing potential of plasma samples coming from  

35–55 year old women, was significantly lower compared with that of women at the age of 25  

(359.50 ± 35.41 vs. 548.06 ± 56.83 mmol Trolox equivalents/L). Twelve weeks of the tested 

micronutrient supplement intake, diminished the difference in FRAP values between both groups from 

189.10 to 59.96 nmol/L of Trolox equivalents. 

Analysis of selected elements of the enzymatic antioxidant system, revealed a slight increase of 

superoxide dismutase activity (SOD), by about 16%, in comparison to the state before the 

NucleVital®Q10 Complex supplementation (Figure 1b, p < 0.001). Enhanced ability of erythrocytes  

to scavenge superoxide anion did not extend to the removal of other reactive oxygen species  

(glutathione-dependent peroxidase (GPx) activity was unaffected by micronutrient supplement intake; 

Figure 1c). Increased SOD activity may be related with polyunsaturated fatty acids activity, present in 

the tested micronutrient preparation, as shown before [24,25], or the effect exerted by NucleVital®Q10 

Complex on the SOD gene in pluripotent stem cells [26].  

Analysis of other parameters involved in regulation of redox homeostasis showed that the 

combination of micronutrients present in the NucleVital®Q10 Complex significantly diminished lipid 

peroxidation in erythrocytes (Figure 2a; p < 0.02), while not affecting the lipid oxidation process in 

plasma (TBARS assay, Figure 2b). NucleVital®Q10 Complex treatment also did not affect the level of  

8-OHdG (Figure 2c). 

Figure 2. Oxidative stress biomarkers in blood samples of women before and after 

micronutrient supplementation with NucleVital®Q10 Complex; lipid peroxidation markers 

in erythrocytes (a), plasma (b) and level of 8-OHdG (c). # indicates statistically significant 

differences p < 0.02.  
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Figure 2. Cont. 

 

2.2. Anti-Ageing Abilities of NucleVital®Q10 Complex 

The revealed antioxidative abilities of the tested NucleVital®Q10 Complex led us to perform an 

analysis of parameters related to the ageing process, due to numerous studies indicating the role of 

antioxidants in limiting the ageing progress [27,28]. Using peripheral blood mononuclear cells 

(PBMCs) we have performed analysis of telomerase activity as well as expression of genes essential 

for senescence and regulation of oxidative stress (sirtuin 1 and 2) before and after 12 weeks of 

NucleVital®Q10 Complex intake. Sirtuins belong to class III histone deacetylases and are involved in 

regulation of inflammation, life/health span, calorie restriction/energetics, mitochondrial biogenesis, 

stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian 

rhythms through deacetylation of transcription factors and histones [29,30]. It is well known that 

SIRT1 expression as well as activity is decreased in chronic inflammatory states and ageing,  

conditions which are accompanied by increasing intensity of oxidative processes and the production of 

free radicals [29]. In our experimental conditions the performed gene expression analysis revealed a 

significantly increased level of both deacetylases (SIRT1 and SIRT2) of about 26.5% ± 12% and 

25.0% ± 10%, respectively, after the micronutrient supplementation (Figure 3). 

Figure 3. Expression of histone deacetylases (SIRT1 and SIRT2) in peripheral blood 

mononuclear cells isolated from blood of volunteers taking NucleVital®Q10 Complex. # 

indicates statistically significant differences (p < 0.001).  
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The level of brain-derived neurotrophic factor (BDNF) was also elevated after 12 weeks of 

NucleVital®Q10 Complex diet supplementation (Figure 4a). The changes were estimated to be up to  

26% ± 9% in comparison to control level (before the onset of supplementation). Decreased plasma 

level of BDNF is connected with memory and learning impairment [31] during the ageing process, in 

Alzheimer’s disease [32] and vascular dementia [33]. It would be interesting to check if the changes in 

analysed parameters are sustained despite lack of micronutrient intake and for how long. 

On the other hand we have also found increased activity of telomerase (Figure 4b), which often 

serves as a potential biomarker of biological age [34], nevertheless PBMCs telomere length, was not 

changed (Figure 4c). Analysis performed by Cassidy and others [35] on the population of middle- and 

old-age women has shown the association between diet, and other lifestyle factors on leukocyte 

telomere length. Lack of changes in our experimental group may be related with supplementation with 

the tested micronutrient being too short-term. Maybe longer supplementation with the NucleVital®Q10 

Complex would be more beneficial. Results of testing the effect of antioxidants on human health in 

other groups also showed that short-term supplementation might be beneficial in term of limiting the 

harmful effects of oxidative metabolism [36]. 

Figure 4. Level of BDNF (a), telomerase activity (b) and PMBC’s teleomere length (c) of 

healthy volunteers before and after NucleVital®Q10 Complex supplementation. # indicates 

statistically significant differences (p < 0.001).  
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2.3. Effect of NucleVital®Q10 Complex on Vitamin D Deficiencies 

A significant element in the tested micronutrient complex is vitamin D, present in an amount of 5 

µg in a single capsule. As we have already mentioned all the volunteers were qualified for the study 

after a medical up to exclude any with pathological states, nevertheless average vitamin D levels in the 

plasma of recruited women, ranged around 15.61 ng/mL ± 6.66 ng/mL (Table 1) and was significantly 

below the minimum reference value, which is 30 ng/mL. Recent WHO data clearly show that about 

70% of the European population displays suboptimal levels of vitamin D [37]. Vitamin D is essential 

for maintaining calcium and phosphate homeostasis. Severe and long-term deficiency in vitamin D levels 

can result in many metabolic disorders and diseases, such as osteoporosis or hyperparathyroidism [38]. 

Vitamin D modulates transcription of approximately 3% of the human genome via stimulation of 

vitamin D receptors. For example, renin, extracellular matrix metalloproteinases, and tumor necrosis 

factor-α are all regulated by vitamin D [39,40]. Both experimental and clinical studies support the 

health benefits of vitamin D, and its analogues, in the cardiovascular system, and such benefits include 

protecting cardiac function, lowering blood pressure, improving endothelial function, inhibiting 

oxidative stress, and reducing the activity of renin-angiotensin system [40,41]. Twelve weeks of 

supplementation with NucleVital®Q10 Complex was enough to significantly make up for the 

deficiencies in vitamin D level up to 29.16 ng/mL ± 8.59 ng/mL, p < 0.001, (Table 1), which points to the 

effectiveness of the tested preparation in minimizing the risks of disorders resulting from reduced 

levels of vitamin D. 

3. Experimental Section 

3.1. Material 

One capsule of NucleVital®Q10 Complex (Scandinavian Laboratories Inc., Mt. Bethel, PA, USA; 

Marinex Intenational, Lodz, Poland) contains Norwegian salmon oil: omega-3 acids (225 mg; including  

75 mg of eicosapentaenoic acid and 75 mg of docosahexaenoic acid), ubiquinone (50 mg) astaxanthin  

(2.5 mg), lycopene (7.5 mg), lutein palmitate (5 mg), zeaxanthin palmitate (1 mg), L-selenomethionine 

(55 mg), cholecalciferol (5 µg) and α-tocopherol (7.5 mg). The daily dose of NucleVital®Q10 

Complex (six capsules per day) was calculated based on available literature data describing the 

beneficial effects of the indicated compounds on human health, the ageing process and improvement of 

energetic efficacy of the organism [42–48]. 
All experiments were performed on blood samples collected from healthy volunteers using citrate 

as an anticoagulant. For the particular assays plasma, erythrocytes and peripheral blood mononuclear 

cells were used. Erythrocytes were obtained by centrifugation of the blood samples (500× g, 10 min,  

4 °C). After removing plasma and peripheral blood mononuclear cells, a pellet of erythrocytes was 

washed 3-times with ice-cold PBS buffer and hematocrit was measured. The suspension was adjusted 

to 60% hematocrit and this suspension was used in further analysis for preparation of lysates. 

3.1.1. Study Design 

The presented study was carried out as a controlled supplementation study, focused on the effects of 

antioxidant micronutrients on selected parameters of redox homeostasis and ageing-related markers, 
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and based on the Bioethical Committee agreement RNN/84/11/KE. The experimental group consisted 

of 66 women, 35–55 years old, who supplemented their diet with six capsules per day of 

NucleVital®Q10 Complex. The supplementation period lasted 12 weeks. Redox homeostasis and 

ageing-related parameters were determined in blood samples, before start of supplementation (week 0) 

and at week 12. To compare changes in antioxidant activity related with ageing (TAC assay, 

control/basic level), another group (n = 34) of 25 year-old women was recruited. Before the 

experiments, all the recruited participants were subjected to 4 weeks of washout. During the 

experiment, recruited women were not taking any other medicines or vitamin/dietary supplements. 

3.1.2. Inclusion/Exclusion Criteria 

The inclusion criteria of women to the presented study were as follows: age 25–55 years, normal 

nutritional habits and being a non-smoker, non-vegetarian, and not pregnant or lactating, BMI 18.5–27, 

no intake of vitamin supplements, no history of liver diseases or lipid metabolism diseases, 

triglycerides <300 mg/dL, total cholesterol <300 mg/dL, sedimentation rate of erythrocytes <30 mm/h. 

Screening procedures checked the general health of the participants and included the medical history. 

3.2. Analysis of Selected Parameters of Redox Homeostasis and Oxidative Stress 

3.2.1. Measurement of Superoxide Dismutase Activity 

Measurement of total SOD activity (Cu/Zn-, Mn-, Fe-SOD) in erythrocytes was determined in 

diluted hemolysates using a colorimetric assay kit (Cayman Chemical Company, Ann Arbor, MI, 

USA), based on the ability of SOD to dismutation of superoxide anion generated during the 

xanthine/xanthine oxidase reaction, using a tetrazolium salt as an indicator. The assay was performed 

according to the instructions provided by the manufacturer. 

3.2.2. Measurement of Glutathione Peroxidase (GPx) Activity 

Measurement of activity of glutathione peroxidase was determined in erythrocytes using a 

colorimetric assay kit (Cayman Chemical Company), based on oxidation of NADPH monitored by the 

rate of decrease in absorbance at 340 nm. Hemolysate was prepared by mixing erythrocytes with water, 

producing lysate corresponding to 12% hematocrit. Prepared samples were diluted 5-fold for estimation 

of enzyme activity. The assay was performed according to the provided manufacturer’s instructions. 

3.2.3. Total Antioxidant Capacity 

Total antioxidant capacity of plasma samples was estimated by measuring of ferric reducing 

antioxidant power (FRAP) [49]. The assay is based on the ability of antioxidants to reduce of a ferric 

ion-2,4,6-tripyridyltriazine (TPTZ) complex to its ferrous form, which is monitored by the change in 

absorption at 593 nm. Briefly, plasma samples were diluted 30-fold with a FRAP reagent containing: 

(i) 300 mM acetate buffer, pH 3.6; (ii) 10 mM TPTZ in 40 mM HCl; (iii) 20 mM ferric chloride, mixed 

in a ratio of 10:1:1, respectively. Changes in absorbance were monitored for 4 min following the 

preincubation of samples at 37 °C. The results were expressed in Trolox equivalents. 



Molecules 2014, 19 14803 

 

3.2.4. Lipid Peroxidation Assay 

Measurement of lipid peroxidation levels was performed using colorimetric assay kits for plasma 

samples—TBARS assay kit (Cayman Chemical Company), and BIOXYTECH®LPO-586™ kit 

(OxisResearch™, Manhattan Beach, CA, USA) for erythrocytes. The assays are based on the measurement 

of malondialdehyde (MDA) and/or 4-hydroxyalkenes (HAE) generated due to a decomposition of 

polyunsaturated fatty acid peroxides. To stop the progress of lipid peroxidation in analysed samples 

during the assay procedure, butylated hydroxytoluene (BHT) was added to all samples and reagents, to 

a final concentration of 5 mM. The MDA level (plasma samples) and MDA + HAE level 

(erythrocytes) assays were performed according to the manufacturers’ instructions. 

3.2.5. Measurement of 8-OHdG Level 

To determine the level of 8-OHdG in plasma samples, an enzyme-like immunosorbent assay 

(BioVendor, Brno, Czech Republic) was used. To remove all interfering substances, filtration of 

plasma samples was performed. The assay was performed according to the manufacturer’s instructions. 

3.3. Analysis of Ageing-Related Parameters 

3.3.1. RNA Isolation and cDNA Synthesis 

Total RNA was isolated from 200 μL of whole blood samples using a Norgen Leukocyte RNA 

Purification Kit (Norgen Biotek Corporation, Thorold, ON, Canada), according to the provided 

protocol. Purified RNA was used as a template for RT-qPCR reaction. Concentration of RNA was 

measured with a Nanodrop system (Thermo Scientific, Wilmington, DE, USA) and 2 µg of DNA-free 

RNA was converted to cDNA using SuperScript Reverse Transcriptase III and random hexamers 

(Invitrogen, Carlsbad, CA, USA). 

3.3.2. Estimation of SIRT1 and SIRT2 Expression 

PCR amplification was performed using an ABI Prism 7900 Sequence Detection System  

(Applied Biosystems, Carlsbad, CA, USA). Forward and reverse primer (0.1 µM of each)m, cDNA 

template and SYBRGreen Master Mix (Applied Biosystems) were mixed to a final volume of 20 µL. 

Reactions were incubated at 95 °C for 5 min, followed by 40 cycles of 95 °C for 15 s and 60 °C  

for 30 s. Analyzed genes were normalized to the level of 18S. All the primer sequences (18S:  

5'-CCGATAACGAACGAGACTCTGG-3', 5'-TAGGGTAGGCACACGCTGAGCC-3'; SIRT1:  

5'-TACCGAGATAACCTTCTGTTCG-3', 5'-GTTCGAGGATCTGTGCCAAT-3'; SIRT2:  

5'-AGAAGCAGACATGGACTTCCT-3', 5'-CTCCCACCAAACAGATGAC-3') were obtained from 

Qiagen Inc., Valencia, CA, USA. Each sample was analyzed in triplicate. Real-Time PCR data were 

automatically calculated with the data analysis module. The results were analyzed according to the 

2−ΔΔCt method. Validation of PCR efficiency was performed with a standard curve. 
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3.3.3. Measurement of BDNF Level 

Measurement of brain-derived neurotrophic factor (BDNF) level was determined in plasma samples 

using a Quantikine ELISA Human BDNF ELISA kit (R&D Systems, Minneapolis, MN, USA), by 

measurement of absorbance at 450 nm with correction at 540 nm. The assay was performed according 

to the manufacturer’s instructions. 

3.3.4. Measurement of Telomerase Level 

Measurement of telomerase level was determined in peripheral blood mononuclear cells using a 

Human ELISA Telomerase kit (Biocompare, San Francisco, CA, USA), by measurement of absorbance at 

450 nm with correction at 540 nm. The assay was performed according to the manufacturer’s instructions. 

3.3.5. Measurement of PBMC’s Telomere Length 

A quantitative real-time polymerase reaction method [50] was used to measure relative telomere 

length in genomic DNA extracted from peripheral blood mononuclear cells. PCR reactions were set up 

by aliquoting  15 μL of master mix with final concentration of reagents in the PCR reaction: 20 ng of 

DNA, 0.75 × SYBR Green I (Invitrogen), 10 mM Tris-HCl MgCl2 pH 8.3, 50 mM KCl, 3 mM MgCl2, 

0.2 mM dNTP, 1 mM DTT, 1 mM betaine (Sigma, Saint-Louis, MO, USA) and 0.5 U AmpliTaq Gold 

DNA polymerase (Applied Biosystems, Inc.). For multiplex QPCR, the telomere pair telg:  

5'-ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT-3', telc: 5'-TGTTTAGGTATCCCT 

ATCCCTATCCCTATCCCTATCCCTAACA-3', (final concentration of each primer 900 nM) were 

combined with albumin primer pair albu: 5'-CGGCGGCGGGCGGCGCGGGCTGGGCGG 

aaatgctgccacagaatccttg-3' and albd: 5'-GCCCGGCCCGCCGCGCCCGTCCCGCCGgaaaagcatggtcg 

cctgtt-3' (final concentration of each primer 500 nM). The thermal cycling profile was: 15 min 95 °C,  

2 cycles of 15 s at 94 °C, 15 s at 49 °C, and 32 cycles of 15 s at 94 °C, 10 s at 62 °C, 15 s at 74 °C with 

signal acquisition 10 s at 84 °C, 15 s at 88 °C. The data are expressed as T/S ratio, where (T) is the 

number of nanograms of the standard DNA that matches the experimental sample for copy number of 

the telomere template, and (S), the number of nanograms of the standard DNA that matches the 

experimental sample for copy number of scg. Each experimental sample was assayed in triplicate, and 

the final reported result for a sample is the average of three T/S values. Average T/S expected to be 

proportional to the average telomere length per sample. Samples with a T/S > 1.0 have average 

telomere length greater than that of standard DNA; samples with T/S < 1.0 have average telomere 

length shorter than that of standard DNA. 

3.4. Measurement of Vitamin D Level 

Determination total 25-OH vitamin D level was performed using a commercially available 

chemiluminescent immunoassay (CLIA) kit LIAISON 25-OH Vitamin D total Assay (DiaSorin Inc., 

Stillwater, MN, USA) for plasma samples. 
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3.5. Statistical Analysis 

The results of the investigation are expressed as means ± SD. Statistical significance of changes in 

analyzed parameters, before and after taking the NucleVital®Q10 Complex, was done using the paired 

t-test. Values of p < 0.05 were considered as significant. 

4. Conclusions 

In conclusion, the performed analyses of selected parameters related to oxidative stress and ageing 

process on a population of middle and older-age women, allow us to conclude that short term diet 

supplementation with NucleVital®Q10 Complex, being a mixture of antioxidants, vitamins and selenium, 

seems to beneficial and can be recommended. The tested micronutrient mix significantly makes up 

deficiencies in vitamin D level, reduces markers of lipid peroxidation, and at the same time increases 

antioxidant potential of plasma as well as affects positively markers related to the ageing process. 
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